Logo PWr

Korespondencyjny Kurs z Matematyki

Wydział Matematyki Politechniki Wrocławskiej

Lista zadań do wydruku - PDF

PRACA KONTROLNA nr 3 — listopad 2019 r.

Poziom podstawowy

  1. Znaleźć największą wartość funkcji $$f(x) = \frac{2}{\sqrt{4x^2 - 12x +11}}$$ i rozwiązać nierówność $f(x) \geq 1.$

  2. Rozwiązać równanie $$(1+\cos 4x) \sin 2x = \cos^2 2x.$$

  3. Rozwiązać równanie $$ \log_{\sqrt{5}}(4^x - 6) - \log_{\sqrt{5}}(2^x - 2) = 2.$$

  4. Stosunek długości przekątnych rombu jest równy 5:12. Obliczyć stosunek pola rombu do do pola koła wpisanego w ten romb.

  5. Dane są punkty $A(1,1)$ i $B(7,4).$ Na paraboli $y=x^2+x+3$ znaleźć taki punkt $C,$ żeby pole trójkąta $ABC$ było najmniejsze. Wykonać rysunek.

  6. Ramiona trójkąta równoramiennego zawarte są w prostych o równaniach $8x-y+17 = 0$ oraz $4x+7y-59 = 0,$ a jego podstawa przechodzi przez punkt $P(0,2).$ Wyznaczyć równanie prostej zawierającej podstawę i obliczyć pole tego trójkąta.

Poziom rozszerzony

  1. Dla jakich wartości parametru $m$ równanie $$ x^2-2(m-4)x + m^2 + 5m + 6 = 0$$ ma dwa różne pierwiastki rzeczywiste, których suma odwrotności jest dodatnia?

  2. Rozwiązać równanie $$\frac{1}{\sin^2 2x} + \tg x - \ctg x = 2.$$

  3. Rozwiązać układ równań $$\begin{cases} \begin{array}{ccr} \frac{\log(x-y)-1}{2\log 2 - \log(x+y)} & = & 1,\cr \frac{\log x - \log 3}{\log y - \log 7} & = &-1. \end{array} \end{cases}$$

  4. Dany jest trójkąt $ABC$, w którym $\angle ACB = \frac{2\pi}{3}$. Dwusieczna kąta $ACB$ przecina prostą przechodzącą przez punkt $A$ i równoległą do boku $BC$ w punkcie $P$, a prostą przechodzącą przez punkt $B$ i równoległą do boku $AC$ w punkcie $Q$. Udowodnić, że $AQ=BP$.

  5. Wyznaczyć stosunek promienia okręgu wpisanego w romb $ABCD$ o kącie ostrym $\alpha=\angle DAB$ do promienia okręgu opisanego na trójkącie $ABD.$ Sprawdzić dla jakiego kąta $\alpha$ stosunek ten jest najwięszy.

  6. Wyznaczyć równanie zbioru wszystkich środków tych cięciw paraboli $y=x^2,$ które zaczynają się w punkcie $A(1,1).$ Rozwiązanie zilustrować rysunkiem.

Rozwiązania należy wysłać do dnia 18-11-2019.

Sprawdź starannie jak należy zaadresować kopertę oraz co należy umieścić w kopercie. Informacje te możesz znaleźć na stronie Kontakt.

Do rozwiązań należy dołączyć zaadresowaną do siebie kopertę zwrotną z naklejonym znaczkiem, odpowiednim do wagi listu (cennik znaczków).

Wysyłając rozwiązania zadań uczestnik Kursu udostępnia Politechnice Wrocławskiej swoje dane osobowe, które są przetwarzane wyłącznie w zakresie niezbędnym do jego prowadzenia (odesłanie zadań, prowadzenie statystyki). Szczegółowe informacje o przetwarzaniu przez nas danych osobowych są dostępne na stronie O Kursie.

Adres

Rozwiązania jednego z wybranych wariantów zadań należy wysłać do dnia 18-11-2019 na następujący adres:

Korespondencyjny Kurs z Matematyki
poziom podstawowy/rozszerzony
Wydział Matematyki
Politechnika Wrocławska
ul. Wybrzeże Wyspiańskiego 27
50-370 WROCŁAW